Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195.853
Filtrar
1.
Int J Biol Sci ; 20(6): 1978-1991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617536

RESUMEN

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.


Asunto(s)
Neoplasias Colorrectales , Mutaciones Letales Sintéticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Fosforilación , Citoplasma , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Fosfohidrolasa PTEN/genética
2.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622115

RESUMEN

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Asunto(s)
Proteínas de Ciclo Celular , Proteómica , Ciclo Celular/fisiología , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Estabilidad Proteica , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Mitosis
3.
Nat Commun ; 15(1): 3223, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622146

RESUMEN

Two-component systems, consisting of a histidine kinase and a response regulator, serve signal transduction in bacteria, often regulating transcription in response to environmental stimuli. Here, we identify a tandem serine histidine kinase function for KdpD, previously described as a histidine kinase of the KdpDE two-component system, which controls production of the potassium pump KdpFABC. We show that KdpD additionally mediates an inhibitory serine phosphorylation of KdpFABC at high potassium levels, using not its C-terminal histidine kinase domain but an N-terminal atypical serine kinase domain. Sequence analysis of KdpDs from different species highlights that some KdpDs are much shorter than others. We show that, while Escherichia coli KdpD's atypical serine kinase domain responds directly to potassium levels, a shorter version from Deinococcus geothermalis is controlled by second messenger cyclic di-AMP. Our findings add to the growing functional diversity of sensor kinases while simultaneously expanding the framework for regulatory mechanisms in bacterial potassium homeostasis.


Asunto(s)
Proteínas de Escherichia coli , Histidina Quinasa/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fosforilación , Potasio/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Proc Natl Acad Sci U S A ; 121(17): e2320312121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625935

RESUMEN

In gram-positive bacteria, phosphorylated arginine functions as a protein degradation signal in a similar manner as ubiquitin in eukaryotes. The protein-arginine phosphorylation is mediated by the McsAB complex, where McsB possesses kinase activity and McsA modulates McsB activity. Although mcsA and mcsB are regulated within the same operon, the role of McsA in kinase activity has not yet been clarified. In this study, we determined the molecular mechanism by which McsA regulates kinase activity. The crystal structure of the McsAB complex shows that McsA binds to the McsB kinase domain through a second zinc-coordination domain and the subsequent loop region. This binding activates McsB kinase activity by rearranging the catalytic site, preventing McsB self-assembly, and enhancing stoichiometric substrate binding. The first zinc-coordination and coiled-coil domains of McsA further activate McsB by reassembling the McsAB oligomer. These results demonstrate that McsA is the regulatory subunit for the reconstitution of the protein-arginine kinase holoenzyme. This study provides structural insight into how protein-arginine kinase directs the cellular protein degradation system.


Asunto(s)
Arginina Quinasa , Proteínas Quinasas , Proteínas Quinasas/metabolismo , Arginina Quinasa/metabolismo , Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Fosforilación , Zinc
5.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625937

RESUMEN

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Humanos , Animales , Fosforilación , Serina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Línea Celular , Fosfoproteínas/metabolismo , Insulina/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564636

RESUMEN

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación de la Expresión Génica , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Fosforilación , Hipoxia , Transcripción Genética , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612623

RESUMEN

Posttranslational modifications (PTMs), particularly phosphorylation, play a pivotal role in expanding the complexity of the proteome and regulating diverse cellular processes. In this study, we present an efficient Escherichia coli phosphorylation system designed to streamline the evaluation of potential substrates for Arabidopsis thaliana plant kinases, although the technology is amenable to any. The methodology involves the use of IPTG-inducible vectors for co-expressing kinases and substrates, eliminating the need for radioactive isotopes and prior protein purification. We validated the system's efficacy by assessing the phosphorylation of well-established substrates of the plant kinase SnRK1, including the rat ACETYL-COA CARBOXYLASE 1 (ACC1) and FYVE1/FREE1 proteins. The results demonstrated the specificity and reliability of the system in studying kinase-substrate interactions. Furthermore, we applied the system to investigate the phosphorylation cascade involving the A. thaliana MKK3-MPK2 kinase module. The activation of MPK2 by MKK3 was demonstrated to phosphorylate the Myelin Basic Protein (MBP), confirming the system's ability to unravel sequential enzymatic steps in phosphorylation cascades. Overall, this E. coli phosphorylation system offers a rapid, cost-effective, and reliable approach for screening potential kinase substrates, presenting a valuable tool to complement the current portfolio of molecular techniques for advancing our understanding of kinase functions and their roles in cellular signaling pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Ratas , Fosforilación , Escherichia coli/genética , Reproducibilidad de los Resultados , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas , Proteínas de Transporte Vesicular
8.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612757

RESUMEN

Wildtype Escherichia coli cells cannot grow on L-1,2-propanediol, as the fucAO operon within the fucose (fuc) regulon is thought to be silent in the absence of L-fucose. Little information is available concerning the transcriptional regulation of this operon. Here, we first confirm that fucAO operon expression is highly inducible by fucose and is primarily attributable to the upstream operon promoter, while the fucO promoter within the 3'-end of fucA is weak and uninducible. Using 5'RACE, we identify the actual transcriptional start site (TSS) of the main fucAO operon promoter, refuting the originally proposed TSS. Several lines of evidence are provided showing that the fucAO locus is within a transcriptionally repressed region on the chromosome. Operon activation is dependent on FucR and Crp but not SrsR. Two Crp-cAMP binding sites previously found in the regulatory region are validated, where the upstream site plays a more critical role than the downstream site in operon activation. Furthermore, two FucR binding sites are identified, where the downstream site near the first Crp site is more important than the upstream site. Operon transcription relies on Crp-cAMP to a greater degree than on FucR. Our data strongly suggest that FucR mainly functions to facilitate the binding of Crp to its upstream site, which in turn activates the fucAO promoter by efficiently recruiting RNA polymerase.


Asunto(s)
Escherichia coli , Fucosa , Sitios de Unión , Escherichia coli/genética , Operón/genética , Fosforilación
9.
Nat Commun ; 15(1): 3146, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605029

RESUMEN

Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Péptidos , Humanos , Fosforilación , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica , Mutación , Proteínas Intrínsecamente Desordenadas/metabolismo , Unión Proteica , Sitios de Unión , Proteínas del Ojo/genética
10.
Sci Rep ; 14(1): 8451, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605136

RESUMEN

Protein synthesis is a highly energy-consuming process that is downregulated in response to many environmental stresses or adverse conditions. Studies in the yeast Saccharomyces cerevisiae have shown that bulk translation is inhibited during adaptation to iron deficiency, which is consistent with its requirement for ribosome biogenesis and recycling. Although iron deficiency anemia is the most common human nutritional disorder, how iron modulates translation in mammals is poorly understood. Studies during erythropoiesis have shown that iron bioavailability is coordinated with globin synthesis via bulk translation regulation. However, little is known about the control of translation during iron limitation in other tissues. Here, we investigated how iron depletion affects protein synthesis in human osteosarcoma U-2 OS cells. By adding an extracellular iron chelator, we observed that iron deficiency limits cell proliferation, induces autophagy, and decreases the global rate of protein synthesis. Analysis of specific molecular markers indicates that the inhibition of bulk translation upon iron limitation occurs through the eukaryotic initiation factor eIF2α and mechanistic target of rapamycin (mTOR) pathways. In contrast to other environmental and nutritional stresses, iron depletion does not trigger the assembly of messenger ribonucleoprotein stress granules, which typically form upon polysome disassembly.


Asunto(s)
Deficiencias de Hierro , Hierro , Animales , Humanos , Hierro/metabolismo , Fosforilación , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Mamíferos/metabolismo
11.
Cells ; 13(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38607079

RESUMEN

Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.


Asunto(s)
Mecanotransducción Celular , Transducción de Señal , Transducción de Señal/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proliferación Celular , Fosforilación
12.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608030

RESUMEN

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ursidae , Animales , Ratones , Trastorno Autístico/genética , Factor 2 de Elongación Peptídica , Fosforilación , Trastorno del Espectro Autista/genética , Bioensayo
13.
Cell Death Dis ; 15(4): 260, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609357

RESUMEN

Breast cancer has the highest global incidence and mortality rates among all cancer types. Abnormal expression of the Annexin family has been observed in different malignant tumors, including upregulated ANXA9 in breast cancer. We found highly expressed ANXA9 in metastatic breast cancer tissues, which is correlated with breast cancer progression. In vitro, the functional experiments indicated ANXA9 influenced breast cancer proliferation, motility, invasion, and apoptosis; in vivo, downregulation of ANXA9 suppressed breast cancer xenograft tumor growth and lung metastasis. Mechanically, on one side, we found that ANXA9 could mediate S100A4 and therefore regulate AKT/mTOR/STAT3 pathway to participate p53/Bcl-2 apoptosis; on the other side, we found ANXA9 transferred S100A4 from cells into the tumor microenvironment and mediated the excretion of cytokines IL-6, IL-8, CCL2, and CCL5 to participate angiogenesis via self- phosphorylation at site Ser2 and site Thr69. Our findings demonstrate significant involvement of ANXA9 in promoting breast cancer progression, thereby suggesting that therapeutic intervention via targeting ANXA9 may be effective in treating metastatic breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Neoplasias de la Mama/genética , Mama , Fosforilación , Regulación hacia Abajo , Microambiente Tumoral , Proteína de Unión al Calcio S100A4 , Anexinas , Factor de Transcripción STAT3
14.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612387

RESUMEN

Apobec-1 complementation factor (A1CF) functions as an RNA-binding cofactor for APO-BEC1-mediated C-to-U conversion during RNA editing and as a hepatocyte-specific regulator in the alternative pre-mRNA splicing of metabolic enzymes. Its role in RNA editing has not been clearly established. Western blot, co-immunoprecipitation (Co-IP), immunofluorescence (IF), methyl thiazolyl tetrazolium (MTT), and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to examine the role of A1CF beyond RNA editing in renal carcinoma cells. We demonstrated that A1CF interacts with NKRF, independent of RNA and DNA, without affecting its expression or nuclear translocation; however, it modulates p65(Ser536) phosphorylation and IFN-ß levels. Truncation of A1CF or deletion on NKRF revealed that the RRM1 domain of A1CF and the p65 binding motif of NKRF are required for their interaction. Deletion of RRM1 on A1CF abrogates NKRF binding, and the decrease in IFN-ß expression and p65(Ser536) phosphorylation was induced by A1CF. Moreover, full-length A1CF, but not an RRM1 deletion mutant, promoted cell proliferation in renal carcinoma cells. Perturbation of A1CF levels in renal carcinoma cells altered anchorage-independent growth and tumor progression in nude mice. Moreover, p65(Ser536) phosphorylation and IFN-ß expression were lower, but ki67 was higher in A1CF-overexpressing tumor tissues of a xenograft mouse model. Notably, primary and metastatic samples from renal cancer patients exhibited high A1CF expression, low p65(Ser536) phosphorylation, and decreased IFN-ß levels in renal carcinoma tissues compared with the corresponding paracancerous tissues. Our results indicate that A1CF-decreased p65(Ser536) phosphorylation and IFN-ß levels may be caused by A1CF competitive binding to the p65-combined site on NKRF and demonstrate the direct binding of A1CF independent of RNA or DNA in signal pathway regulation and tumor promotion in renal carcinoma cells.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Ratones , Desaminasas APOBEC-1 , Carcinoma de Células Renales/genética , Modelos Animales de Enfermedad , ADN , Neoplasias Renales/genética , Ratones Desnudos , Fosforilación , ARN , Proteínas de Unión al ARN , Interferón beta
15.
Mol Plant Pathol ; 25(4): e13456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619864

RESUMEN

The spindle assembly checkpoint (SAC) proteins are conserved among eukaryotes safeguarding chromosome segregation fidelity during mitosis. However, their biological functions in plant-pathogenic fungi remain largely unknown. In this study, we found that the SAC protein MoMad1 in rice blast fungus (Magnaporthe oryzae) localizes on the nuclear envelope and is dispensable for M. oryzae vegetative growth and tolerance to microtubule depolymerizing agent treatment. MoMad1 plays an important role in M. oryzae infection-related development and pathogenicity. The monopolar spindle 1 homologue in M. oryzae (MoMps1) interacts with MoMad1 through its N-terminal domain and phosphorylates MoMad1 at Ser-18, which is conserved within the extended N termini of Mad1s from fungal plant pathogens. This phosphorylation is required for maintaining MoMad1 protein abundance and M. oryzae full virulence. Similar to the deletion of MoMad1, treatment with Mps1-IN-1 (an Mps1 inhibitor) caused compromised appressorium formation and decreased M. oryzae virulence, and these defects were dependent on its attenuating MoMad1 Ser-18 phosphorylation. Therefore, our study indicates the function of Mad1 in rice blast fungal pathogenicity and sheds light on the potential of blocking Mad1 phosphorylation by Mps1 to control crop fungal diseases.


Asunto(s)
Ascomicetos , Fosforilación , Virulencia , Serina
16.
Proc Natl Acad Sci U S A ; 121(17): e2402226121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621137

RESUMEN

Since its discovery over three decades ago, signal transducer and activator of transcription 1 (STAT1) has been extensively studied as a central mediator for interferons (IFNs) signaling and antiviral defense. Here, using genetic and biochemical assays, we unveil Thr748 as a conserved IFN-independent phosphorylation switch in Stat1, which restricts IFN signaling and promotes innate inflammatory responses following the recognition of the bacterial-derived toxin lipopolysaccharide (LPS). Genetically engineered mice expressing phospho-deficient threonine748-to-alanine (T748A) mutant Stat1 are resistant to LPS-induced lethality. Of note, T748A mice exhibited undisturbed IFN signaling, as well as total expression of Stat1. Further, the T748A point mutation of Stat1 recapitulates the safeguard effect of the genetic ablation of Stat1 following LPS-induced lethality, indicating that the Thr748 phosphorylation contributes inflammatory functionalities of Stat1. Mechanistically, LPS-induced Toll-like receptor 4 endocytosis activates a cell-intrinsic IκB kinase-mediated Thr748 phosphorylation of Stat1, which promotes macrophage inflammatory response while restricting the IFN and anti-inflammatory responses. Depletion of macrophages restores the sensitivity of the T748A mice to LPS-induced lethality. Together, our study indicates a phosphorylation-dependent modular functionality of Stat1 in innate immune responses: IFN phospho-tyrosine dependent and inflammatory phospho-threonine dependent. Better understanding of the Thr748 phosphorylation of Stat1 may uncover advanced pharmacologically targetable molecules and offer better treatment modalities for sepsis, a disease that claims millions of lives annually.


Asunto(s)
Lipopolisacáridos , Transducción de Señal , Animales , Ratones , Fosforilación , Lipopolisacáridos/farmacología , Interferones/metabolismo , Inflamación/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo
17.
Sci Rep ; 14(1): 7736, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565583

RESUMEN

Evolution shapes protein sequences for their functions. Here, we studied the moonlighting functions of the N-linked sequon NXS/T, where X is not P, in human nucleocytosolic proteins. By comparing membrane and secreted proteins in which sequons are well known for N-glycosylation, we discovered that cyto-sequons can participate in nucleic acid binding, particularly in zinc finger proteins. Our global studies further discovered that sequon occurrence is largely proportional to protein length. The contribution of sequons to protein functions, including both N-glycosylation and nucleic acid binding, can be regulated through their density as well as the biased usage between NXS and NXT. In proteins where other PTMs or structural features are rich, such as phosphorylation, transmembrane ɑ-helices, and disulfide bridges, sequon occurrence is scarce. The information acquired here should help understand the relationship between protein sequence and function and assist future protein design and engineering.


Asunto(s)
Ácidos Nucleicos , Proteínas , Humanos , Proteínas/metabolismo , Glicosilación , Secuencia de Aminoácidos , Fosforilación , Ácidos Nucleicos/metabolismo
18.
Sci Rep ; 14(1): 7739, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565869

RESUMEN

Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.


Asunto(s)
Ciclohexilaminas , Proteínas Quinasas , Pirimidinas , Ubiquitina-Proteína Ligasas , Humanos , Proteínas Quinasas/metabolismo , Células HeLa , Ubiquitina-Proteína Ligasas/metabolismo , Fosforilación , Ubiquitina/metabolismo , Adenosina Trifosfato/metabolismo
19.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568193

RESUMEN

The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Transducción de Señal , Femenino , Embarazo , Humanos , Ligandos , Fosforilación , Sesgo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
20.
Oncol Res ; 32(4): 625-641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560562

RESUMEN

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Interleucina-17/genética , Interleucina-17/metabolismo , Fosforilación , Neoplasias Pulmonares/patología , Acetilación , Ratones Desnudos , Transcripción Genética , Movimiento Celular/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...